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)

Nl

difficult

4 rr.x )

difficult

measurement
N /

 target )

@ Broad influence

)

[s)
(=}
%8s
0
o3

+2) Abundant modification

@ Dynamic cycling

Regulatory simplicity

)
)
)




ﬁ\Opportunity for Research )

4 N [ N I
C 9
A post translational modification @

of @ where OGT attaches | - | o
LG e o regulatory arge datasets O-GIcNAc modifie
da SpeCIfIC SUsdal @ (GlCNAC) ‘f»r,om simplicity (gene exp.) \proteins are cataloged/
a & while OGA J L J

\_
removes it
éé:} @ @ Broad influence

OGT #2:) Abundant modification

‘ 6@ ﬁi @ Dynamic cycling

OGA - Regulatory simplicity

AN AN AN




ﬁ\Opportunity for Research )

- N N ~
A post translational modification @

of B where OGT attaches | - | e
P — regulatory arge datasets O-GIcNAc modifie
a SpeCIfIC =Ugal ) (GlCNAC) from simplicity (gene exp.) proteins are cataloged
N\ AN AN /

a while OGA

removes it

é%rj @ Central Questions
OGT

o -
Can we use + to infer

ﬁil O-GlcNAcylation dysregulation?

OGA



ﬁ\Opportunity for Research )

4 N [ N ™
A post translational modification @

of B where OGT attaches | _ oA
s regulatory arge datasets -GlcNAc modifie
a SpeCIfIC sugar @ (GlCNAC) from simplicity (gene exp.) proteins are cataloged
a &) while OGA - AN J /
removes it

é} @ Central Questions )
OGT

o -
Can we use + to infer

\
‘-. G@ ﬁil O-GlcNAcylation dysregulation?

OGA
Can we use inferred dysregulation +[@]+[@] to
identify cancer relevant downstream pathways?




CO) 4n;
Can we use + to infer

O-GlcNAcylatian dysregulation?

7

— —

S
ﬁ ol|| © g c || E|l &
Sl == = IERIE:
s oll 2 & - + i}
mo|| = ) o
TCGA Gene Expression

& Clinical Data




& Clinical Data

N P
e ) ) &
ﬁ ol|| © g c|| || %
el =l S = i ®
s 2|l 2 < - + ]
o = D —
m m = o
TCGA Gene Expression

O

Healthy O-GlcNAc Regulation

Inferred Likelihood of

&

OGT

A

v

OGA

~




CO) 4n;
Can we use + to infer

O-GlcNAcylation dysregulation?
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Average Regulation Score

Healthy: 0.50 (n = 112)
Cancer: 0.31 (n = 1239)

Regulation Score

Healthy: 0.51 (n = 70)

Healthy: 0.52 (n = 46)
Cancer: 0.27 (n = 523)
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Post-Progression Survival
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Name value value Ratio score
EGFR Mutation-Positive Lung

Adenocardnoma 0.07270 0.5440 15.86 41.57
Non-small Cell Lung Cancer 0.07429 0.5478 4.68 12.16
Lung Adenocarcinoma 0.04606 0.5440 3.92 12.07
Lung Function (FEV1) 0.1238 0.5489 1.95 4.06
Lung Cancer In Ever Smokers 0.2088 0.5489 2.4 3.77
Squamous Cell Lung Carcinoma 0.2226 0.5535 2.30 3.46
Lung Cancer 0.2320 0.5672 1.83 2.68
Lung Function (FEV1/FVC) 0.3173 0.6250 1.23 1.42
Lung Function (FVC) 0.6955 0.7983 0.85 0.31
Lung Function (Forced Vital Capacity) 0.8862 0.9197 0.46 0.06

Networks - Biological Validation
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Significance of Research

@ Safertherapeutic targets
®- Cancer insights relating to O-GlcNAc
7 Risk vs protective pathways
& Shared vs cancer specific pathways
@ Biomarker discovery

% Applicability beyond cancer

K A Generalizable workflow /




Knowledge Gap

é - O-GlcNAcylation is linked to tumor progression, but its systems-level role
=/, remains unclear.

- No established framework exists to study its <g> | @/

dysregulation or its downstream protein
effects across cancers. G
o D
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z:: - Developed a scalable framework to infer O-GlcNAcylation dysregulation

i
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How We Addressed It

* - Mapped key functional networks to assess its role in cancer progression
and patient outcomes.

g - ldentified risk and protective pathways, guiding targeted hypotheses on
@ tumor growth and therapy resistance.
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