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Al Can Identify Different Types of Biomarkers for Precision Health
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Editorial articles:

) Xie, Y.; Minna, J. D., Nat Med, 2008
Pharmacodynamic Xie, Y.; Minna, J.D., JCO, 2010
markers Xie, Y.; Minna, J.D., Lancet, 2012
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Genomic based Precision Health

Genomic signature for treatment response prediction (Adjuvant Genomics)

PRECISION MEDICINE AND IMAGING | JANUARY 03 2019

Validation of the 12-gene Predictive Signature for Adjuvant
Chemotherapy Response in Lung Cancer ©

PREDICTIVE BIOMARKERS AND PERSONALIZED MEDICINE | MARCH 14 2013

A 12-Gene Set Predicts Survival Benefits from Adjuvant
Chemotherapy in Non-Small Cell Lung Cancer Patients ©
Yang Xie &% ; Wei Lu; Shidan Wang; Ximing Tang; Hao Tang; Yunyun Zhou; Cesar Moran; Carmen Behrens; Jack A. Roth;

Hao Tang; Guanghua Xiao; Carmen Behrens; Joan Schiller; Jeffrey Allen; Chi-Wan Chow; Milind Suraokar; Alejandro Corvalan; Qinghua Zhou: David H. Johnson: Stephen G. Swisher @ : John V. Heymach ® : Vassiliki A. Papadimitrakopoulou:

Jianhua Mao; Michael A. White; Ignacio |. Wistuba; John D. Minna; Yang Xie &4 Guanghua Xiao @ ; John D. Minna ® : ignacio I. Wistuba &

Predicted benefit group Predicted non-benefit group ADIUVANT GENOMICS APPROACH TO NSCLC DIAGNOSIS
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Digital Pathology

Traditional Pathology Workflow

/:,,\ » Transfer the glass slides Slide analyzed in lab Patient d|agnos|s

Digital Pathology Workflow

Deep Neural Network
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Al Models for Digital Pathology UTSouthwestern

Medical Center
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Al Models for Digital Pathology

1. Early detection and risk stratification 2. Disease diagnosis and subtyping
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3. Treatment response prediction
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Disease areas: Key publications:

* Lung cancer * Wang at al, Cancer Research, 2020
* Breast cancer e Zhang et al, Am J Pathol. 2022

* Head & neck cancer * Rong et al, Am J Pathology., 2023

e Oral potentially malignant disorders * Wang et al, J. Clin. Invest. , 2023

* Rhabdomyosarcoma * Rong et al, Modern Pathology, 2023

Liver cancer

Wang et al, Nature Communications, 2023


https://www.jci.org/

Al-assisted Design of T Cell Receptors (TCRs) UTSouthwestern

Medical Center

pMTnet : predicts the binding of T cell receptors (TCR) with TCR targets using Al approaches

In silico Empirical validation
4 . . ) 4 )
* PpMTnet and associated te(;hnologles for « Extensive library of TCR targets and corresponding
TCR design (IP protected) TCRs available to enhance pMThnet
« Functional validation of enhanced TCRs
« Established workflow to isolate ultra-rare TCRs
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validated iteratively in-house

nature

I e machine intelligence [ Licensable TCRs ]

ARTICLES

Deep learning-based prediction of the T cell
receptor-antigen binding specificity
Tianshi Lu't, Ze Zhang'¢, James Zhu', Yunguan Wang’, Peixin Jiang?, Xue Xiao', Chantale Bernatchez?,

John V. Heymach?, Don L. Gibbons ©2, Jun Wang?, Lin Xu', Alexandre Reuben ©?= and
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Al-assisted Antimicrobial Resistance Tests UTSouthwestern

Medical Center

PARP (Pan-Antibiotic Resistance Prediction) improves antimicrobial resistance tests

(iﬁlt%’ﬁs%fﬁgs Antimicrobial
colonies resistance test
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Time consuming
Low reproducibility

Fast turnaround
Highly reproducible
High accuracy

Nanopore realtime Cloud computation
sequencer + Al
0.5 days 0.01 days
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RESEARCH ARTICLE

VAMPr: VAriant Mapping and Prediction of antibiotic
resistance via explainable features and machine learning

Jiwoong Kim E@, David E. Greenberg [l [E), Reed Pifer, Shuang Jiang, Guanghua Xiao, Samuel A. Shelburne, Andrew Koh,
Yang Xie, Xiaowei Zhan



Large Language Model: Extract Information from Clinical Notes UTSouthwestern

Medical Center

A critical assessment of using ChatGPT for extracting structured
data from clinical notes

Prompt engineering design Overall performance of ChatGPT on data extraction from pathology reports

Attribute Accuracy | F1 | Kappa | Recall | Precision | Coverage

primary tumor features

L L M (pT) 0.87 0.87 | 0.76 0.87 0.89 0.97

LARGE LANGUAGE MODEL reglonal Iymph nOde

involvement (pN) 0.91 091 | 0.84 0.91 0.92 0.94
overall tumor stage 0.76 0.76 | 0.61 0.76 0.77 0.94
histological diagnosis 0.99 0.99 | 0.98 0.99 0.99 0.96
Average 0.89 0.88 | 0.80 0.89 0.89 0.95

Huang et al, npj Digital Medicine, 2024



Data Integration Platform UTSouthwestern

Medical Center
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PCDC: Pediatric Cancer Data Core

(CPRIT RP180805) _—

UT Southwestern
4" Children's Medical Center Dallas &‘

UT Dallas, UT Arlington
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Rice Univ
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