RPA Overview

TABLE OF CONTENTS

• What is Robotic Process Automation (RPA)?
• What is the Objective of the UT System RPA Initiative?
• How is the program governed?
• What is the Robotic Process Automation Operating Model (ROM)?
• Are Digital Workers safe and secure?
• What is the process and time commitment to automate a process?
• What process can be automated? What processes has UTS automated?
• How do I determine what to automate?
• Who is IASG? What services does IASG provide?
• Has RPA delivered value to UTS?
• How do I Get an RPA Program Started?
• How Do I Build a Process Automation?
• How do I get started?
What is Robotic Process Automation (RPA)?
RPA: Robotic Process Automation Described

What is RPA?

RPA is the application of software “robots,” not physical robots, that mimics human action and connects multiple systems through automation without changing the existing IT landscape.

RPA is integrated in an existing IT infrastructure:

As a renewal of the existing IT landscape is not required, a high level of automation can be reached without major effort. RPA uses established control mechanisms and can communicate with all systems. Therefore, no interface has to be created.

RPA is a software:

RPA is a computer software that runs repetitive, rule-based processes. The software is trained based on functional specifications and can be adjusted at any time.

RPA simulates an employee:

The software robot has access to diverse applications with an ID or a password. The robot can gather information or change data. Consequently, business and administrative processes can be fully automated.

Capabilities:

- Log into applications
- Enter data from excel
- Collect, move data and files
- Formulate data
- Fill in forms
- Open emails & attachments
- Extract structured and semi structured data from documents
- Scrape browsers
- Report generation
- Read databases
- Follow if/then decisions
USE CASE CHARACTERISTICS

• Tedious, repetitive tasks
• High-volume transactions
• Rules-based answers
• Manual work prone to errors
• Tasks performed outside office hours
• Existing work supported by algorithms or macros

Deterministic (Rule-Based)
The process contains a defined set of tasks required for execution

Digitized (Electronic)
The data required for the process can be accessed electronically

Documented (Well Defined)
The process is transcribed with the appropriate details
RPA Use Case Examples

Finance & Accounting
- Billing / Invoicing
- Payments processing
- Cash application monitoring
- A/R follow up & credit analysis
- Incentive claims
- Closing procedures
- JE support
- Costing
- Fixed Assets
- A/R follow up & credit analysis
- Reporting
- Grant Closing procedures

HR Services
- Recruiting
- Onboarding
- Payroll processing
- Benefits administration
- Time & attendance management
- Education and training
- Off-boarding
- Compliance Reporting
- Position number reconciliations

IT Services
- Software Installations
- Data migrations
- Application testing
- Server application monitoring
- Identity & access management
- Security monitoring
- Help Desk management
- Policy distribution & compliance reporting

Higher Education
- Course registration
- Enrollment process
- Transcript Evaluation
- Shortlist candidates
- Attendance management
- Eligibility criteria check
- Schedule meetings
- Equipment reservations
- Student Withdrawal
- Mailing
- State reporting
- Student closing reports

Risk & Controls
- Quality audits
- Compliance audits
- Internal audit enablement
- Security tracking & monitoring
- Technical threat & vulnerability management
- Access management

Supply Chain
- Spend categorization & reporting
- New vendor setup
- Contract creation & updates
- Contract compliance audits
- Contract reporting
- Quote & invoice management
- Returns processing
- Freight management
- Inventory management
- Capital equipment requests

Revenue Cycle
- Eligibility Checking
- New patient appointment requests
- Patient pre-arrival and arrival
- Claim denials
- Credit balances
- Medically Unlikely Edits
- Billing inquiries
- Code changes
- Identify payor and physician
- underpayments/overpayments

Customer Relationship Management
- Customer setup and master data mgmt.
- Password resets
- Appointment scheduling
- Downloading customer profile to Contact Center employee
- Automated Contact Center reporting
- Anticipate customer needs and follow up
- Pareto ranking of issues
- Automating internal reporting of customer inquiries and issues

Highlighted use cases are those that IASG have worked.

The University of Texas System

Intelligent Automation Services Group

Promoting Success with Intelligent Automation

Updated 2/15/2024
To Learn More About RPA

Please refer to the resources and webinars located at

https://www.utsystem.edu/offices/collaborative-business-services/intelligent-automation-services-group
Objective of UT System RPA Initiative
Background and Program Objectives

- Started in 2018, this initiative has a significant opportunity to help each UT System institution "to do more with the same." Automating manual, mundane, repetitive, rules-based tasks that can be done outside of normal business hours may be very advantageous in controlling administrative costs in the years ahead.

- Key objectives
 - Reduce operating cost and/or increase revenue
 - Increase productivity, reduce errors and improve quality
 - Reduce exposure to risks and enhance compliance
 - Enhance customer service
 - Increase employee satisfaction
 - Improve information available for decision-making and planning

- Programed managed by UT System Office of Collaborative Business Services-Intelligent Automation Services Group
How is the program governed?
Governance Framework

The governance framework is established to focus on RPA development, financial planning, resource management, and control and risk management. The framework promotes cross campus collaboration, and tracks program scalability and value.
RPA Governance
RPA Governance Body

UT System OCBS Executive Committee

- Approves strategic direction, annual OCBS work plan and budget, projects and related budgets and monitors performance.
- Members comprised of Chief Business Officers from each UT System Institution.

UT System RPA Operating Committee

- Members comprised of representatives from institutions that are appointed by CBO
- Develops and recommends activities to the EC that achieve the RPA Strategy, operationalize lessons learned, and deploy new process automations.
- Develops RPA program expertise and shares knowledge
- Serve as Institution’s communication conduit and RPA champion
- Recommends use cases and program improvements

IASG is a division of the UT System Office of Collaborative Business Services (OCBS) that provides the following services:

- Webinar & Education Programs
- Business Process analysis for automation
- Automation Design and Development
- Hosting and Monitoring Services
- Consulting Services

Updated 3/20/2024
What is the Robotic Process Automation Operating Model (ROM)?
Purpose of Robotic Process Automation Operating Model (ROM)

The ROM is to be used as both a reference guide and tool to help guide IASG and Institutions through the RPA journey. It contains seven integrated pillars to ensure value realization. It demonstrates a formally structured, reusable framework and processes for a sustainable RPA Operating Model that will allow the program to consistently apply methodologies and deliverables. Elements include governance, roles & responsibilities, ideation, deployment, and support.

IASG has established templates that are available to each institution, such as functional and design documents, unit testing scripts. In addition, IASG can provide the expertise in best practices and standards related to topics in ROM.
RPA Operating Model (ROM)

Seven integrated Pillars to ensure value realization

<table>
<thead>
<tr>
<th>Vision</th>
<th>Organization</th>
<th>Governance and Pipeline</th>
<th>Delivery Methodology</th>
<th>Service Model</th>
<th>People</th>
<th>Technology</th>
</tr>
</thead>
</table>
| 1.1 Program Purpose
- Benefit definition
- Executive sponsorship
- Funding availability | 2.1 RPA Program Structure
- Model options
- (Centralized vs Federated)
- Maturity model
- Roles & responsibilities
- Skills assessment | 3.1 Policies & Standards
- Program Governance
- Process Prioritization
- Development Protocols
- RPA Risk & Controls
- SLA Agreements
- Asset Management | 4.1 Implementation methodology and design
4.2 Develop User Stories & Test Cases
4.3 Liaison with development teams
4.4 Agile Approach
4.5 User Acceptance Testing
- Define participants
- Modifications
4.6 Performance testing
- Modifications & tuning
4.7 Migration to production
- Determine bot scheduling
- Documentation sent to asset management | 5.1 Daily
- Bot scheduling
- Real time monitoring of RPA applications, IT infrastructure
- Reporting framework
- Incident Management and SLA adherence
5.2 Periodic
- Management of Change Control tickets
- Communications with application owners
- Communications with IT & Security
- Institutional Integration
- Infrastructure improvements | 6.1 Stakeholder & Change Management
- RPA Toolkit
- Change Champion Network
- Coaching & Communications
- Training
6.2 Talent Management
- Define Future State Roles
- Assess Current Roles & needs
- Define Learning Strategy
- Create Learning Personas & Pathways
- Implement & Monitor | 7.1 Infrastructure
- Access Management
- Hosting Options |
| 1.2 High Level Business Case
- Program targets
- Alignment w/ other improvement programs | 3.2 Readiness Assessment
- 3.3 Opportunity ideation
- 3.4 Opportunity assessment & Prioritization | 5.3 Readiness Assessment
- 5.4 Opportunity ideation
- 5.5 Opportunity assessment & Prioritization | | | |
| 1.3 Business & IT Readiness
- Business risk considerations
- System strategy compliance
- Vendor management | 4.8 HyperCare
- Knowledge transfer
- Transition to ongoing management model | 5.6 Roll out plan
- Communication plan
- Communication to key stakeholders
- Communication to impacted teams | | | |
| 1.4 Value Measurement
- Performance Management
- Benefits Realization | 4.9 Continuous operations
- Execute & monitor process change | 5.7 Roll out plan
- Communication plan
- Communication to key stakeholders
- Communication to impacted teams | | | |
Additional Resources

• The UT System RPA ROM can be found at the UT System OCBS Resources website.

• Foundation and principles of the Blue Prism ROM can be found at ROM Hub - SS&C Blue Prism Community

• Blue Prism ROM Certification Blue Prism University | Homepage
Are Digital Workers safe and secure?
Digital Workers are Safe Because…

Security Access and Privileges
• A digital worker is assigned access and privileges like a human worker. Their credentials are stored in a secured credential manager within the Blue Prism application.

Separation of Duties
• Roles of system admins, developers, and bot controllers are segregated within the application.

Security Audits
• Digital identity and access management is provisioned with an audit feature that allows tracking of all activity performed by the digital worker.
• Digital workers only follow prescribed rules.

End to End Encrypted Data
Information Security and the Digital Workforce Webinar

The Information Security and the Digital Workforce Webinar is a presentation shared by a Blue Prism Enterprise Architect that covers security governing principles. Topics include network security, credentialing, access restrictions, user profiles, authentication, authorization, encryption, and the architecture design.

A copy of the video and presentation can be found at the UT System OCBS Webinar website.
What is the process and time commitment to automate a process?
Build a Digital Worker

2-4 weeks

Process Selection
- Ideate
- Characteristics
- Business Case
- Current Applications
- Opportunity Assessment
- Process Tool

Design
- Document Steps
- Record Process
- Develop Functional Design
- Develop Solutions Design

Build
- Develop automation in Blue Prism
- Unit Test
- User Test

Deploy
- Move to Production
- Schedule automation
- HyperCare

Maintain
- Monitor
- Make code changes

8-12 weeks

Continuous

18-24 weeks

8-12 weeks

8-12 weeks

2-4 weeks
Roles & Responsibilities Per Process

DESIGN
- Capture As-Is Process

BUILD
- Establish Automation To-Be Scope & Process
- Build Business Process in RPA Software

TEST
- Test Automated Process & Perform UAT

DEPLOY
- Implement & Stabilize Processes in Production

2 weeks
~6 weeks
2 weeks
2 weeks

Roles and Time Commitments

<table>
<thead>
<tr>
<th>Role</th>
<th>Process Analyst</th>
<th>Technical Architect</th>
<th>Automation Developer</th>
<th>Project Manager</th>
<th>Business Process Owner</th>
<th>IT</th>
<th>Information Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Manager</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Provides project oversight, workshop coordination, communication, and obtains sign-off on FDO.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business Process Owner</td>
<td>3-4 sessions (2 hours each to understand processes)</td>
<td>4-6 hours for review of proposed solution (FDO) and sign-off</td>
<td>ACCEPTANCE: Sign off on Functional Design Document</td>
<td>6-8 hours to edit in process workshops and assist with to-be updates to systems, if needed</td>
<td>2-4 hours to set up access needs to systems such as PeopleSoft, networks, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 6-8 hours to edit in process workshops and assist with to-be updates to systems, if needed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>Process Analyst</th>
<th>Technical Architect</th>
<th>Automation Developer</th>
<th>Project Manager</th>
<th>Business Process Owner</th>
<th>IT</th>
<th>Information Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Analyst</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Supports Build process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Support institutional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>project manager activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Architect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Oversees developers, sets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coding standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automation Developer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Codes in selected software.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>Process Analyst</th>
<th>Technical Architect</th>
<th>Automation Developer</th>
<th>Project Manager</th>
<th>Business Process Owner</th>
<th>IT</th>
<th>Information Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Manager</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Manages sprint activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business Process Owner</td>
<td>4 hours per week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 4 hours per week to review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>progress and provide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clarifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Time to prepare test data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>& scenarios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Validate demos of bots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>working</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 2-4 hours for access</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>updates, technical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>troubleshooting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>Process Analyst</th>
<th>Technical Architect</th>
<th>Automation Developer</th>
<th>Project Manager</th>
<th>Business Process Owner</th>
<th>IT</th>
<th>Information Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Analyst</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Supports transition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Support institutional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>project manager activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Architect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Guides the migration to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automation Developer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Provides stabilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Hours over 12 weeks

PM Process Analyst
• 115 hours per process

Technical Architect
• 30 hours per process

Automation Developer
• 280 hours per process

Business Process Owner
• 48-60 hours per process

Information Technology
• 20-30 hours per process

The University of Texas System
Intelligent Automation Services Group
Powering Success with Intelligent Automation

22
How do I determine what to automate?
Automation “Use Case” Characteristics

• Tedious, repetitive tasks
• High-volume transactions
• Rules-based answers
• Manual work prone to errors
• Tasks can be performed outside normal office hours
• Existing work supported by algorithms or macros
Business Unit Support will identify and submit processes as potential RPA opportunities. All submissions must include and meet the following minimum conditions¹ to be recognized as a suitable candidate:

Deterministic
(Rule-Based)

The process contains a defined set of tasks required for execution.

A process is deterministic if:
- There is a sequential series of tasks with fixed start and end conditions
- There is no randomness or judgement (i.e., the process is rule based) in outcomes

Digitized
(Electronic)

The data required for the process can be accessed electronically.

Examples of digitized storage include:
- Local PC drive
- Shared network drive
- IT Application / database

Documented
(Well Defined)

The process is transcribed with the appropriate details².

Critical details include:
- All business process owners
- Instructions for executing each process task
- Key business/ system exceptions and corresponding workarounds

¹ Additional criteria may be introduced at various stages of the RPA program to reflect the goals and scope
² Keystroke documentation will not be required at the identification phase
High-level business case

Analytics helps validate overall goals, allocate goals to specific areas and prioritize further assessment and implementation activity play a role?

Coverage – Creating the funnel

Pipeline size: Typically ratio equals 3x opportunities identified to realized savings target

Functional breadth: In order to generate sufficient opportunities program scope should consider multiple functional areas

Actual benefit realization: Full benefits are usually realized 2-3 months after deployment therefore it is important to identify quick wins

Implementation pipeline: Opportunity pipeline should include functional and technical diversity to allow for parallel workstreams

Benefit realization - Maximizing the funnel throughput

1. **Materiality** - Identify largest dollars and FTE’s including areas of high growth (potential cost avoidance)

2. **Most variable labor** - Focus on contingent labor, outsourced tasks, Global Business Services (GBS) and OT for retained FTEs

3. **Easiest path to realization**
 - Executive sponsorship
 - Discreet activities (HC 100% dedicated to activity)
 - Maximum concentration (transactions and FTE) per tower
 - Non-customer facing or critical process
 - Limited impact to existing systems
 - Existing skills for RPA technology

4. **Complexity/ feasibility**
 - Data quality/ integrity
 - Process and/or system stability
 - Compliance sensitivity

Opportunity identification and roadmap creation

- Revenue Cycle
- Supply Chain
- Finance
- Student Services

Function

Process identification

Prioritization analysis

Business Case & Roadmap

Legend

- Easier
- Harder

The University of Texas System

Intelligent Automation Services Group

Powering Success with Intelligent Automation
Opportunity/Process Assessment Success Factors

Approach

- Identify process automation opportunities by function / institution (pre-work by institution to gather needed information on process, sub-process, task, etc.)
- Process owners participate in workshops over a three-week timeframe for two to four hours to review a selected Function (Finance, Budgeting, Rev Cycle, Supply Chain, or HR) for automation potential and value

Success Factors

- Inventory of processes by functions
- Process documentation available
- Headcount and effort tied to processes available
- Availability of Process Owners during Opportunity/Process Assessment workshops
- Minimal competing initiatives during workshops
What process can be automated? What processes has UTS automated?
UT System Institutions’ Projects in Production

Value Achieved From Feb 2019 thru FY24-Q2 (Feb 2024)

UTA
- **Grant Close**
 - Feb 2019: $116,326
 - May 2023: $119,668

UTEP
- **Grant Close**
 - May 2023: $37,909

UTPB
- **Grant Close**
 - Apr 2023: $28,577

UTSA
- **Grant Close**
 - May 2023: $233,974

UTT
- **Review & Validate**
 - Mar 2019: $233,974

Sahara UTS142 Notifications
- **Close Announcement** Nov 2023, Reminder Notice Dec 2023, 30 Day Past Due Jan 2024, 60 Day Past Due Feb 2024
 - $122,500

UTSWMC
- **TMHP Medicaid**
 - Apr 2021: $9,435,300
 - Mar 2020: $15,935,652

UTHSCH
- **Review & Validate**
 - Feb 2019: $1,352,820

UTHSCSA
- **TMHP Medicaid**
 - Mar 2020: $15,935,652

UTMDACC
- **Payor Under/Over Payment**
 - Apr 2022: $1,171,822

UT System Admin
- **LBB Reporting**
 - Nov 2021: $77,942
- **GPO**
 - Aug 2023: TBD
- **Agency Nursing Timekeeping**
 - Dec 2023: TBD

Total Hours Saved: 72,971 (39 FTEs)
Aggregate Value Achieved: $30M
Automations in Development

Academic Institutions

<table>
<thead>
<tr>
<th>Submitted Institution</th>
<th>Process Area</th>
<th>Process Name</th>
<th>Description</th>
<th>Target Completion – FY24</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTA</td>
<td>Finance</td>
<td>SAHARA Notification for 120 Days past due</td>
<td>This process is the last of the six automations for SAHARA notifications for cost centers that have not been reconciled or approved, and that are 120 days past due. An email is sent to reconcilers, managers, owners, department leadership, compliance, and the VP for Business and Finance.</td>
<td>Q3</td>
<td>UAT</td>
</tr>
<tr>
<td>UTSA</td>
<td>Supply Chain</td>
<td>Missing Receiving Receipts Updates to PO</td>
<td>Missing Receiving Receipts for electronic Rowdy Exchange POs that convert to electronic vouchers for DTS. That process requires a team member to manually push back the date in Rowdy Exchange once a week, so items on PO can be received that weren’t previously received.</td>
<td>Q4</td>
<td>Design</td>
</tr>
<tr>
<td>UTSA</td>
<td>Student Services</td>
<td>Loan Refund</td>
<td>Parent Plus Loan refund processing utilizing Banner report AR_F404 Loans_Holds_Rpt (student info) and the TSARREV (refund amt), and generate voucher in PeopleSoft.</td>
<td>Q4</td>
<td>Design</td>
</tr>
<tr>
<td>UTSA</td>
<td>Payroll</td>
<td>Pre-Distribution Audit</td>
<td>Replicate finding source of funding discrepancy when paysheets are open. This particular process would need more details but could be used at other UTShare institutions.</td>
<td>Q4</td>
<td>Design</td>
</tr>
<tr>
<td>UTT</td>
<td>Payroll</td>
<td>Teacher Retirement System (TRS) Reconciliation</td>
<td>Compares TRS portal file to PeopleSoft check query by downloading files from both databases. Then reconciles EE and ER payments to HCM journals.</td>
<td>Q3</td>
<td>Build</td>
</tr>
<tr>
<td>UT System Admin</td>
<td>Supply Chain</td>
<td>HUB Reporting</td>
<td>Monthly HUB reporting that pulls a report of expenditures, removes exceptions, reconciles that data against the TPASS report, and delivers the output report to a shared network folder.</td>
<td>Q4</td>
<td>Design</td>
</tr>
</tbody>
</table>
Automations in Development
Health Institutions

<table>
<thead>
<tr>
<th>Submitted Institution</th>
<th>Process Area</th>
<th>Process Name</th>
<th>Description</th>
<th>Target Completion – FY24</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTHSCSA</td>
<td>Research</td>
<td>Clinical Trials Office Invoice Creation</td>
<td>Entering study details in REDCap, updating study information in REDCap, and creating invoices for clinical trials in REDCap.</td>
<td>Q3</td>
<td>Design</td>
</tr>
<tr>
<td>UTMDACC</td>
<td>Nursing Services</td>
<td>Agency Nursing Monthly Timekeeping</td>
<td>Provide monthly time calculation out of Kronos and calculate to daily time, including overtime for each nurse for an entire month. This report will capture any Kronos corrections made to the nurse’s time for the month. The data will then be separated by the nursing agency and an: 1. Accounts Payment voucher is created 2. Payment created for the nursing agency</td>
<td>Q3</td>
<td>UAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Follow-up</td>
<td>Creating a report of invoices over 120 past due</td>
<td>Q3</td>
<td>Design</td>
</tr>
</tbody>
</table>
Automations in Proof of Concept

<table>
<thead>
<tr>
<th>Submitted Institution</th>
<th>Process Area</th>
<th>Process Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTPB</td>
<td>Student Services</td>
<td>Transcript Evaluation</td>
<td>Uses OCR Decipher to collect Undergraduate Transfer Transcript data. Uses RPA to accepts the student in slate, CRM. Slate sends a notification for transcript updates. As is processes takes 3 admission counselor to work transcripts. Majority of the processes are electronic transfer, but some are pdf mailed form (100+ in a week). Will require OCR. There is an frequent change of rules. File parser upload. Updates when students take courses while still enrolled in university and needs to be updated.</td>
</tr>
<tr>
<td>UTMDACC</td>
<td>Accounts Payable</td>
<td>Invoice Processing IDP Solution</td>
<td>Create PeopleSoft vouchers from invoices</td>
</tr>
</tbody>
</table>
Automations in Evaluation or Pre-Design

<table>
<thead>
<tr>
<th>Submitted Institution</th>
<th>Process Area</th>
<th>Process Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTEP</td>
<td>Student Services</td>
<td>Closing Reports Summary</td>
<td>Run report three times a day using the Banner interface and copy the sequence id, and totals into the closing report log numbers excel worksheet.</td>
</tr>
<tr>
<td>UTEP</td>
<td>Student Services</td>
<td>Withdrawal Expense Summary</td>
<td>Pull refund detail and amount data from Tab 1, 2, & 4 into a single output after the no refund date for each POT. Make adjustment calculation for student with multiple parts of term. The digital worker should be able to create a final file ready for upload to clear accounts.</td>
</tr>
<tr>
<td>UTEP</td>
<td>Student Services</td>
<td>Drop Students</td>
<td>Drop students in the Banner system that have not paid their fees.</td>
</tr>
<tr>
<td>UTRGV</td>
<td>Grants Finance</td>
<td>Grants Close</td>
<td>Identify and create workbooks for grants that are ready to be closed. Prepare the workbook for each grant for the Grant Specialist to review.</td>
</tr>
<tr>
<td>UTRGV</td>
<td>HR Benefits</td>
<td>TRS</td>
<td>Compares TRS portal file to PeopleSoft check query by downloading files from both databases. Then reconciles EE and ER payments to HCM journals.</td>
</tr>
<tr>
<td>UTT</td>
<td>Student Services</td>
<td>Patriot Promise Management</td>
<td>Run five queries from PS CMS production, clean up such as deleting rows, merging cell data, calculations. Produce a single output file of students eligible to receive the Patriot Promise distribution. If permitted to allow digital worker to batch upload.</td>
</tr>
<tr>
<td>UTT</td>
<td>Student Services</td>
<td>Federal Reconciliation</td>
<td>Reporting spend by running several queries such as UT Share Balance, Awards, Disbursements, and COD reports. Compile data and identify discrepancies.</td>
</tr>
<tr>
<td>UTT</td>
<td>Human Resources</td>
<td>Ci Process</td>
<td>The Ci Process is employed to execute approved changes from eForms to PeopleSoft due to the absence of autorun in PeopleSoft. The process involves a validation step and the sending of manual email notifications. Validations include checks against job data and identification of errors. The business is expected to address the validation effort. The Ci Process impacts approximately seven eForms related to job changes, encompassing activities like hiring, termination, job attributes, and assignment transfers.</td>
</tr>
<tr>
<td>UTT</td>
<td>Finance</td>
<td>Reconciliation – Fixed Assets to GL</td>
<td>A monthly review of fixed asset and General ledger activity is done to ensure Year end Schedule S on the AFR is properly reported.</td>
</tr>
<tr>
<td>UTHSCSA</td>
<td>Revenue Cycle</td>
<td>Medical Records Denials</td>
<td>Submits claims denials reconsideration to payors website when additional information additional information (such as clinical notes, visit summaries, case history etc.) are requested by the payor to review a denied claim.</td>
</tr>
</tbody>
</table>
A complete list of automations in ideation can be found on the IASG website:

https://www.utsystem.edu/offices/collaborative-business-services/intelligent-automation-services-group
Who is IASG? What services does IASG provide?
Who is IASG

Intelligent Automation Services Group (IASG) is an internal support group that serves all UT System Institutions for business process automation utilizing RPA and Intelligent Automation tools.
Intelligent Automation Services Group Offers

- Webinar & Education Programs
- Business Process analysis for automation
- Automation Design and Development
- Hosting and Monitoring Services
- Consulting Services
Intelligent Automation Services Group (IASG)

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffery Bonnardel</td>
<td>Executive Director, IASG</td>
<td>jabonnardel@mdanderson.org</td>
</tr>
<tr>
<td>Jennifer Gloria</td>
<td>Program Manager</td>
<td>jgloria@mdanderson.org</td>
</tr>
<tr>
<td>Quintin Peikert</td>
<td>Sr. RPA Analyst</td>
<td>wgpeikert@mdanderson.org</td>
</tr>
<tr>
<td>Kapil Gupta</td>
<td>Robotics Process Automation Architect</td>
<td>Kgupta@mdanderson.org</td>
</tr>
<tr>
<td>Isaac Shaffer</td>
<td>Sr. Robotics Process Automation Developer</td>
<td></td>
</tr>
<tr>
<td>Michelle Nguyen</td>
<td>Robotics Process Automation Developer</td>
<td>MLNguyen1@mdanderson.org</td>
</tr>
<tr>
<td>Nagy Somasetty</td>
<td>Robotics Process Automation Architect (Contractor)</td>
<td>Nagy.s@binaryway.com</td>
</tr>
<tr>
<td>Marlena Kays</td>
<td>Administrative Assistant</td>
<td>mskays@mdanderson.org</td>
</tr>
</tbody>
</table>

Updated 3/27/2024
Has RPA delivered value to UTS?
Value Creation through FY24 Q2

<table>
<thead>
<tr>
<th>Institution</th>
<th>Process</th>
<th>Started</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTMDACC</td>
<td>Grant Cash Reconciliation</td>
<td>FY19</td>
<td>$27,422</td>
<td>$54,844</td>
<td>$54,844</td>
<td>$13,711</td>
<td>N/A</td>
<td>N/A</td>
<td>$150,821</td>
</tr>
<tr>
<td>UTHSCH</td>
<td>Review & Validate</td>
<td>FY19</td>
<td>$133,236</td>
<td>$266,472</td>
<td>$266,472</td>
<td>$266,472</td>
<td>$279,702</td>
<td>$140,466</td>
<td>$1,352,820</td>
</tr>
<tr>
<td>UT</td>
<td>Review & Validate</td>
<td>FY19</td>
<td>$20,466</td>
<td>$40,932</td>
<td>$40,932</td>
<td>$46,840</td>
<td>$51,995</td>
<td>$32,809</td>
<td>$233,974</td>
</tr>
<tr>
<td>UTHSCSA</td>
<td>TMHP Medicaid Eligibility</td>
<td>FY20</td>
<td>$532,982</td>
<td>$2,637,042</td>
<td>$2,637,042</td>
<td>$5,929,976</td>
<td>$4,571,921</td>
<td>$2,263,731</td>
<td>$15,935,652</td>
</tr>
<tr>
<td>UTSWMC</td>
<td>TMHP Medicaid Eligibility</td>
<td>FY21</td>
<td></td>
<td></td>
<td>$2,143,455</td>
<td>$3,208,658</td>
<td>$3,515,718</td>
<td>$567,468</td>
<td>$9,435,300</td>
</tr>
<tr>
<td>UT System</td>
<td>LBB System Adm</td>
<td>FY21</td>
<td></td>
<td></td>
<td></td>
<td>$17,658</td>
<td>$36,700</td>
<td>$23,583</td>
<td>$77,942</td>
</tr>
<tr>
<td>UTMDACC</td>
<td>Underpayment Overpayment</td>
<td>FY22</td>
<td></td>
<td></td>
<td>$282,046</td>
<td>$395,894</td>
<td>$493,882</td>
<td>$1,171,822</td>
<td></td>
</tr>
<tr>
<td>UTA</td>
<td>Grant Close</td>
<td>FY22</td>
<td></td>
<td></td>
<td></td>
<td>$14,464</td>
<td>$70,716</td>
<td>$31,146</td>
<td>$116,326</td>
</tr>
<tr>
<td>UTMDACC</td>
<td>TMHP</td>
<td>FY22</td>
<td></td>
<td></td>
<td></td>
<td>$826,046</td>
<td>$277,939</td>
<td>$1,103,986</td>
<td></td>
</tr>
<tr>
<td>UTSWMC</td>
<td>Financial Aid</td>
<td>FY22</td>
<td></td>
<td></td>
<td></td>
<td>$10,500</td>
<td>$49,000</td>
<td>$262,000</td>
<td></td>
</tr>
<tr>
<td>UTSWMC</td>
<td>MR Denials</td>
<td>FY22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTPB</td>
<td>Grant Close</td>
<td>FY23</td>
<td></td>
<td></td>
<td></td>
<td>$17,356</td>
<td>$20,553</td>
<td>$37,909</td>
<td></td>
</tr>
<tr>
<td>UTSA</td>
<td>Grant Close</td>
<td>FY23</td>
<td></td>
<td></td>
<td></td>
<td>$6,826</td>
<td>$21,751</td>
<td>$28,577</td>
<td></td>
</tr>
<tr>
<td>UTEP</td>
<td>Grant Close</td>
<td>FY23</td>
<td></td>
<td></td>
<td></td>
<td>$39,896</td>
<td>$79,792</td>
<td>$119,688</td>
<td></td>
</tr>
<tr>
<td>UTT</td>
<td>TMHP</td>
<td>FY23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$489</td>
<td>$1,966*</td>
<td>$2,455</td>
</tr>
<tr>
<td>UTA</td>
<td>Sahara UTS 142 Notifications</td>
<td>FY24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$122,500</td>
<td>$122,500</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>$181,124</td>
<td>$895,230</td>
<td>$5,142,745</td>
<td>$9,779,826</td>
<td>$10,036,759</td>
<td>$4,126,587</td>
<td>$30,162,272</td>
</tr>
</tbody>
</table>

*Q1 only

Updated 4/17/2024
How to Get an RPA Program Started
Key activities to get started include…

- Defining Organizational Objectives (Vision & Strategy)
- Establishing RPA Governance
- Determining Technical Environment & Support Model (e.g., IASG, In-house, 3rd Party)
- Selecting Delivery Team (e.g., IASG, In-house, 3rd Party)
- Ensuring stakeholders on-board
 - Information Security
 - IT
 - Compliance
 - Internal Audit
 - Employees

The IASG Team is available to assist you with any of these activities. IASG@mdanderson.org
How Do I Build a Process Automation?
How to Build a Process Automation

- Select Process
- Document-Map Process
- Establish Team
- Key Decisions
- Design
- Build
- Test
- Deploy
Select a Process

- Identify potential processes for automation that meet use case characteristics
- Consider processes which can not be improved through existing application.
- Perform a process assessment to determine automation potential of processes selected (e.g., potentials savings, complexity of build, risks, and limits).
- Ensure it meets RPA requirements
 - Digitized
 - Deterministic
 - Documented
Document Process

• Create detail step by step procedures of the process (SME & Business/Process Analyst)
• Create the Functional Design Document - Flow chart current and new process (Business/Process Analyst)
• Create the Solution Design Document (Technical Architects)
RPA Team

- Capture Current Process – Subject Matter Expert (SME) and RPA Analyst
- Establish Scope – Process Owner, SME, and RPA Analyst
- Document To Be State – RPA Analyst
- Configure Automation – Blue Prism Developer
- Test Automation – Unit Testing Blue Prism Developer and SME
- UAT Testing – SME, Developer, and RPA Analyst
- Finalize Process Documentation – RPA Analyst
- Deploy and Stabilize – Technical Architect and Monitor Team
Key Decisions

• What, if all, of the process will be automated?
• How often will the digital worker run, i.e. frequency, hours, days of the week?
• Do you need a SQL server to capture large data sets?
• How many licenses will you need?
• Will the environment reside at your institution or UT SIS?
• Who will support and maintain the automation?
Design

- Functional Design Document - a document that details the business process that is to be automated. Once agreed as the basis for the automation of the target process, will be used as a platform from which the automated solution will be designed.

- Solution Design Document - a comprehensive document containing, not only high-level details of how the developer will deliver the solution in the RPA platform, but also includes details of other deliverables that are required for the solution (i.e. web services, database tables, web forms etc.) and on other details such as security, scheduling, alerting, management information, and exception handling.
Build

Once the solution design document has been developed, then the solution must be reviewed and agreed upon by the process owner, IT, implementation team, and delivery team to ensure successful delivery.

An RPA Developer is then tasked to build out the solution using business objects in the Blue Prism application studio.

The developer will need requirements during this phase such as the input and output files, and test data to prove the object logic.
Blue Prism Tutorial Video

Blue Prism Video Tutorial | 010 | Introduction to process studio and creating a simple process - YouTube
Test

The aim of testing is to deliver solutions that meet business requirements and contain the minimum possible number of faults.

- Unit testing is testing the performance of the automation, environment, and stability.
- User Acceptance testing is validating the output, and meeting expectations.
Deploy

Move to Production

• HyperCare
 – Move to Production HyperCare where automation is in production but is closely being monitored by the delivery team. Once stability is achieved, knowledge transfer occurs between developers and the monitoring team.

• Business as Usual (BAU)
 – Routine operations
Things to Remember – Lessons Learned

- Get Information Security approval before you start the process
- Make sure all interested Parties are involved, (ISO, Audit, Compliance, Process Owners SME, etc.)
- Involve a Technical Architect at design to advise, and create solution design
- Get credentials for the DW to the appropriate applications
- Determine when the automation can run and how long
- Try and determine number of DW needed
- Unit Testing done by developer and with Process SME, and should run end to end to simulate production
- UAT should run end to end to simulate production
- Don’t develop in a vacuum, engage the process SME
RPA Video

- https://www.youtube.com/watch?v=5JJCZIcIC1Q&list=PL4SEtvjUqihFh-iFvb_s0VAhPCX1tzg2A&index=3
- Please visit the UT System OCBS Webinar website for the How to Build a Digital Worker Webinar
How do I get started?
Identify Process

- Select a process that meets the use case characteristics
- Ensure it meets RPA requirements
 - Digitized
 - Deterministic
 - Documents
- Conduct a process assessment to determine potential savings, complexity of build, risks, and limits.
- Consider processes which cannot be improved through existing application.

The IASG Team is available to guide you on these requirements. IASG@mdanderson.org
Have a good internal team

Include key stakeholders to ensure proper RPA development workflow, financial planning, resource management, control and risk management, and to prevent potential delays.

- Information Security
- IT
- Compliance
- Internal Audit
- Employees